

Question 1:

By studying a recently discovered species of bacteria, you find that the enzyme Zeta catalyzes the conversion of A to B. You purify Zeta and perform enzyme kinetics experiments, measuring **Vmax** to be **60 $\mu\text{M}/\text{min}$** , **KM** to be **15 μM** , and **kcat** to be **$10^6/\text{sec}$** .

Unfortunately, you lose part of your notes before transcribing them to your notebook, so you **don't know** how much purified Zeta and [A] you added to the different tubes. Try to reconstruct the conditions of your original experiment, detailing your reasoning.

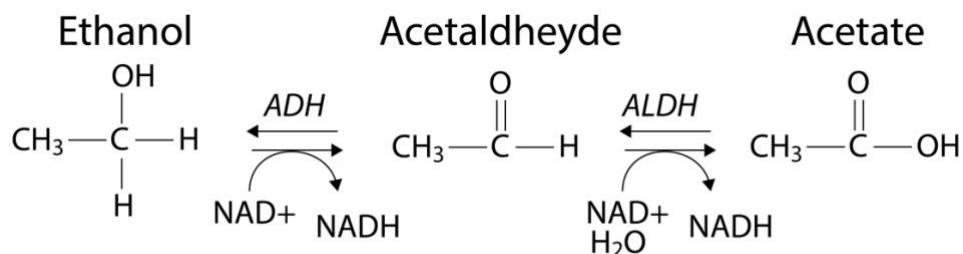
(a) In one of your tubes, you measured the production of **24 μM of B per minute**. What was the concentration of [A] you added? [1 pt]

(b) What was the concentration of Zeta you added? [1 pt]

(c) You discover that your reaction contained **1.5 μM** of a known competitive inhibitor of Zeta with a **Ki** of **3 μM** . Now, knowing this, calculate the **KM** for the reaction in the absence of the inhibitor. [2 pts]

Question 2:

Alcohol dehydrogenases (ADHs) are enzymes that catalyze the oxidation of **primary and secondary alcohols to toxic aldehydes and ketones**, respectively. These are then converted to less toxic **acetate byproducts** by the enzyme **Acetaldehyde Dehydrogenase (ALDH)**.


(a) In cases of methanol poisoning, **intravenous ethanol infusion** is used as treatment. Explain the principle behind this treatment. [1 pt]

(b) The **KM** of the **liver ADH isozyme $\alpha\beta 1$** for ethanol and methanol is **1 mM** and **15 mM**, respectively. Calculate the kinetic parameters for the **methanol-to-formaldehyde** reaction catalyzed by **liver ADH isozyme $\alpha\beta 1$** in the presence of **1 mM ethanol**. [2 pts]

(c) A researcher purifies a **new ADH isoform** and finds that it catalyzes the conversion of **0.30 g of ethanol (molecular weight = 46 g/mol)** per minute at **37 °C** at **Vmax**. What is the turnover number (**kcat**) of ADH (in **min^{-1}**)? Assume the **molecular weight of ADH is 81,000 g/mol**. [2 pts]

(d) **Alcohol flush reaction** is a condition in which a person develops **flushing or blotches** associated with **erythema on the face, neck, shoulders, ears, and, in some cases, the entire body** after consuming alcohol. Approximately **30–50%** of **East Asians** carry the **ALDH2*2 allele on chromosome 12**, which is associated with **alcohol flush reaction**. **ALDH2*2** bears a **lysine-for-glutamate substitution** at

position **487** within the **cofactor binding site**. By analyzing the reactions depicted in **Figure 3**, derive a **possible mechanism** by which **ALDH2*2** contributes to alcohol flush reaction. [2 pts]

Fig. 3